Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths

Thomason, J.L. and Kalinka, G. (2001) A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths. Composites Part A: Applied Science and Manufacturing, 32 (1). pp. 85-90. ISSN 1359-835X

Text (strathprints006433)
Accepted Author Manuscript

Download (692kB)| Preview


    The strength of composite reinforcement fibres is normally measured on samples of much greater length than the actual residual fibre lengths found in many composite materials. This is due to a number of limitations of the standard techniques which are employed. We present a description of a technique which enables values for the tensile strength of composite reinforcement fibres at short gauge lengths to be obtained. The technique is based on an adaptation of a micro-mechanical test apparatus for fibre pullout measurements. Data is presented which was obtained at gauge lengths of 180-380 µm on E-glass and S-2 glass® fibres taken from different chopped reinforcement products. The technique can be used at gauge lengths as short as 20 µm. The data indicates that the values of average fibre strength in these products are significantly below the pristine glass strength values.