Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Ship product modelling

Whitfield, R.I. and Duffy, A.H.B. and Meehan, J. and Wu, Z. (2003) Ship product modelling. Journal of Ship Production, 19 (4). pp. 230-245. ISSN 8756-1417

[img]
Preview
Text (strathprints006373)
strathprints006373.pdf
Accepted Author Manuscript

Download (531kB)| Preview

    Abstract

    This paper is a fundamental review of ship product modeling techniques with a focus on determining the state of the art, to identify any shortcomings and propose future directions. The review addresses ship product data representations, product modeling techniques and integration issues, and life phase issues. The most significant development has been the construction of the ship Standard for the Exchange of Product Data (STEP) application protocols. However, difficulty has been observed with respect to the general uptake of the standards, in particular with the application to legacy systems, often resulting in embellishments to the standards and limiting the ability to further exchange the product data. The EXPRESS modeling language is increasingly being superseded by the extensible mark-up language (XML) as a method to map the STEP data, due to its wider support throughout the information technology industry and its more obvious structure and hierarchy. The associated XML files are, however, larger than those produced using the EXPRESS language and make further demands on the already considerable storage required for the ship product model. Seamless integration between legacy applications appears to be difficult to achieve using the current technologies, which often rely on manual interaction for the translation of files. The paper concludes with a discussion of future directions that aim to either solve or alleviate these issues.