Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels

Barbour, Mark and Wood, Rachel and Hridi, Shehla U and Wilson, Chelsey and McKay, Grant and Bushell, Trevor J and Jiang, Hui-Rong (2018) The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels. Journal of Neuroimmunology. pp. 1-33. ISSN 0165-5728

[img] Text (Barbour-etal-JN2018-The-therapeutic-effect-of-anti-CD52-treatment-in-murine)
Barbour_etal_JN2018_The_therapeutic_effect_of_anti_CD52_treatment_in_murine.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 24 February 2019.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (621kB) | Request a copy from the Strathclyde author

Abstract

Experimental autoimmune encephalomyelitis (EAE) mice were administered with murine anti-CD52 antibody to investigate its therapeutic effect and whether the treatment modulates IL-33 and ST2 expression. EAE severity and central nervous system (CNS) inflammation were reduced following the treatment, which was accompanied by peripheral T and B lymphocyte depletion and reduced production of various cytokines including IL-33, while sST2 was increased. In spinal cords of EAE mice, while the number of IL-33+ cells remained unchanged, the extracellular level of IL-33 protein was significantly reduced in anti-CD52 antibody treated mice compared with controls. Furthermore the number of ST2+ cells in the spinal cord of treated EAE mice was downregulated due to decreased inflammation and immune cell infiltration in the CNS. These results suggest that treatment with anti-CD52 antibody differentially alters expression of IL-33 and ST2, both systemically and within the CNS, which may indicateIL-33/ST2 axis is involved in the action of the antibody in inhibiting EAE.