Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations

Bonazzoli, Marcella and Dolean, Victorita and Pasquetti, Richard and Rapetti, Francesca; Lee, Chang-Ock and Cai, Xiao-Chuan and Hansford, Victoria and Kim, Hyea Hyun and Klawonn, Axel and Park, Eun-Jae and Widlund, Olof B., eds. (2017) Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. In: Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering . Springer-Verlag, KOR, pp. 117-124. ISBN 9783319523897 (https://doi.org/10.1007/978-3-319-52389-7_10)

[thumbnail of Bonazzoli-etal-2017-Schwarz-preconditioning-for-high-order-edge-element]
Preview
Text. Filename: Bonazzoli_etal_2017_Schwarz_preconditioning_for_high_order_edge_element.pdf
Accepted Author Manuscript

Download (452kB)| Preview

Abstract

We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

ORCID iDs

Bonazzoli, Marcella, Dolean, Victorita ORCID logoORCID: https://orcid.org/0000-0002-5885-1903, Pasquetti, Richard and Rapetti, Francesca; Lee, Chang-Ock, Cai, Xiao-Chuan, Hansford, Victoria, Kim, Hyea Hyun, Klawonn, Axel, Park, Eun-Jae and Widlund, Olof B.