Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Tearing down the wall - The inclining experiment

Bertheussen Karolius, Kristian and Vassalos, Dracos (2018) Tearing down the wall - The inclining experiment. Ocean Engineering, 148. pp. 442-475. ISSN 0029-8018

Text (Karolius-Vassalos-OE-2018-Tearing-down-the-wall-the-inclining)
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (6MB) | Preview


It is a well-known fact that the current method for calculating a ship's vertical centre of gravity following inclining experiments is limited when considering magnitude of applied heel angle and accuracy achieved for certain hull-forms due to the assumption of unchanged metacentre position when the vessel is heeled. New methods for calculating the have been proposed, notably the Generalised and the Graphical methods. This paper aims to test these methods on a range of vessels, as well as present and contrast a new method named, the Polar method. The test will establish the error potential for each method using a purely technical software-simulated inclining experiment. Using the established error potential, a corrected is calculated from actual inclining values, which have been evaluated against the loading conditions for each vessel to see if the stability margins have been compromised. The study confirms the Classical method's dependency on applied heel angle magnitude, the change in waterplane area and that it compromises safety in some cases. The other methods, especially the Generalised and the Polar, produce very accurate results for any floating position of the vessel, highlighting the need to tear down the wall-sided assumption implicit in the Classical method and replace it with the better and more flexible methods.