Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging

Kusch, Gunnar and Conroy, Michele and Li, Haoning and Edwards, Paul R. and Zhao, Chao and Ooi, Boon S. and Pugh, Jon and Cryan, Martin J. and Parbrook, Peter J. and Martin, Robert W. (2018) Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging. Scientific Reports, 8 (1). ISSN 2045-2322

[img]
Preview
Text (Kusch-etal-SR-2018-single-InGaN-GaN-nanorod-analyzed-by-cathodoluminescence-hyperspectral-imaging)
Kusch_etal_SR_2018_single_InGaN_GaN_nanorod_analyzed_by_cathodoluminescence_hyperspectral_imaging.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395nm to 480nm and 490nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite difference time domain(FDTD) modelling shows modulation of the nanorod luminescence by cavity modes. By studying the influence of these modes we demonstrate that this can be exploited as an additional parameter in engineering the emission profile of LEDs.