Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

New methods for automatic quantification of microstructural features using digital image processing

Campbell, Andrew and Murray, Paul and Yakushina, Evgenia and Marshall, Stephen and Ion, William (2018) New methods for automatic quantification of microstructural features using digital image processing. Materials & Design, 141. pp. 395-406. ISSN 0264-1275

[img]
Preview
Text (Campbell-etal-MD-2017-New-methods-for-automatic-quantification-of-microstructural)
Campbell_etal_MD_2017_New_methods_for_automatic_quantification_of_microstructural.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Thermal and mechanical processes alter the microstructure of materials, which determines their mechanical properties. This makes reliable microstructural analysis important to the design and manufacture of components. However, the analysis of complex microstructures, such as Ti6Al4V, is difficult and typically requires expert materials scientists to manually identify and measure microstructural features. This process is often slow, labour intensive and suffers from poor repeatability. This paper overcomes these challenges by proposing a new set of automated techniques for 2D microstructural analysis. Digital image processing algorithms are developed to isolate individual microstructural features, such as grains and alpha lath colonies. A segmentation of the image is produced, where regions represent grains and colonies, from which morphological features such as; grain size, volume fraction of globular alpha grains and alpha colony size can be measured. The proposed measurement techniques are shown to obtain similar results to existing manual methods while drastically improving speed and repeatability. The benefits of the proposed approach when measuring complex microstructures are demonstrated by comparing it with existing analysis software. Using a few parameter changes, the proposed techniques are effective on a variety of microstructure types and both SEM and optical microscopy images