Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Review of the comparative susceptibility of microbial species to photoinactivation using 380-480 nm violet-blue light

Tomb, Rachael M. and White, Tracy A. and Coia, John E. and Anderson, John G. and MacGregor, Scott J. and Maclean, Michelle (2018) Review of the comparative susceptibility of microbial species to photoinactivation using 380-480 nm violet-blue light. Photochemistry and Photobiology, 94 (3). pp. 445-458. ISSN 0031-8655

Text (Tomb-etal-PP-2017-comparative-susceptibility-of-microbial-species-to-photoinactivation)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (624kB) | Preview


Antimicrobial violet-blue light is an emerging technology designed for enhanced clinical decontamination and treatment applications, due to its safety, efficacy and ease of use. This systematised review was designed to compile the current knowledge on the antimicrobial efficacy of 380-480 nm light on a range of healthcare and food related pathogens including vegetative bacteria, bacterial endospores, fungi and viruses. Data was compiled from 79 studies, with the majority focussing on wavelengths in the region of 405 nm. Analysis indicated that Gram positive and negative vegetative bacteria are the most susceptible organisms, whilst bacterial endospores, viruses and bacteriophage are the least. Evaluation of the dose required for a 1 log10 reduction of key bacteria compared to population, irradiance and wavelength indicated that microbial titre and light intensity had little effect on the dose of 405 nm light required, however linear analysis indicated organisms exposed to longer wavelengths of violet-blue light, may require greater doses for inactivation. Additional research is required to ensure this technology can be used effectively, including: investigating inactivation of multidrug-resistant organisms, fungi, viruses and protozoa; further knowledge about the photodynamic inactivation mechanism of action; the potential for microbial resistance; and the establishment of a standardised exposure methodology.