Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

On the formation and propagation of hydrothermal waves in liquid layers with phase change

Lappa, Marcello (2018) On the formation and propagation of hydrothermal waves in liquid layers with phase change. Computers and Fluids, 172. pp. 741-760. ISSN 0045-7930

[img]
Preview
Text (Lappa-CF-2017-On-the-formation-and-propagation-of-hydrothermal-waves)
Lappa_CF_2017_On_the_formation_and_propagation_of_hydrothermal_waves.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (4MB)| Preview

    Abstract

    This paper reports on a numerical model expressly developed to inquire about the role of solidification in determining the properties of the emerging surface-tension-driven flow in typical models of oxide crystal growth. Following earlier efforts in the literature, we consider substances which have already enjoyed a widespread consideration for such a kind of studies, i.e. sodium nitrate (NaNO3, Pr=8) and succinonitrile (SCN, Pr=23). Specific numerical examples are expressly elaborated and presented to provide inputs for an increased understanding of the main cause-and-effect relationships driving fluid flow and determining its properties. It is shown that, by interfering with the hydrothermal mechanism, namely the preferred mode of instability of Marangoni flow over a wide range of substances and conditions, solidification contributes to the chaoticity of the system by increasing the complexity of the emerging patterns and enriching the spectral content of the flow.