Upper limits on the rates of binary neutron star and neutron star–black hole mergers from Advanced LIGO's first observing run
Abbott, B. P. and Jawahar, S. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration, Virgo Collaboration (2016) Upper limits on the rates of binary neutron star and neutron star–black hole mergers from Advanced LIGO's first observing run. Physical Review D, 832 (2). L21. ISSN 1550-2368 (https://doi.org/10.3847/2041-8205/832/2/L21)
Preview |
Text.
Filename: Abbott_etal_AJL_2016_rates_of_binary_neutron_star_and_neutron_star_black_hole_mergers_from_advanced_LIGO.pdf
Final Published Version Download (1MB)| Preview |
Abstract
We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses and component dimensionless spins <0.05. We also searched for neutron star–black hole systems with the same neutron star parameters, black hole mass , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary–neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ~70 Mpc, and for neutron star–black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ~110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc−3 yr−1 for binary–neutron star systems and less than 3600 Gpc−3 yr−1 for neutron star–black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star–binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of Gpc−3 yr−1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary–neutron star (neutron star–black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than ().
ORCID iDs
Abbott, B. P., Jawahar, S. ORCID: https://orcid.org/0000-0002-4945-691X, Lockerbie, N. A. ORCID: https://orcid.org/0000-0002-1678-3260 and Tokmakov, K. V. ORCID: https://orcid.org/0000-0002-2808-6593;-
-
Item type: Article ID code: 62455 Dates: DateEvent1 December 2016Published23 November 2016Published Online8 October 2016AcceptedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 28 Nov 2017 12:36 Last modified: 11 Nov 2024 11:51 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/62455