Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Velocity field path-planning for single and multiple unmanned ariel vehicles

McInnes, C.R. (2003) Velocity field path-planning for single and multiple unmanned ariel vehicles. Aeronautical Journal, 107 (1073). pp. 419-426. ISSN 0001-9240

[img]
Preview
Text (strathprints006243)
strathprints006243.pdf
Accepted Author Manuscript

Download (701kB) | Preview

Abstract

Unmanned aerial vehicles (UAV) have seen a rapid growth in utilisation for reconnaissance, mostly using single UAVs. However, future utilisation of UAVs for applications such as bistatic synthetic aperture radar and stereoscopic imaging, will require the use of multiple UAVs acting cooperatively to achieve mission goals. In addition, to de-skill the operation of UAVs for certain applications will require the migration of path-planning functions from the ground to the UAV. This paper details a computationally efficient algorithm to enable path-planning for single UAVs and to form and re-form UAV formations with active collision avoidance. The algorithm presented extends classical potential field methods used in other domains for the UAV path-planning problem. It is demonstrated that a range of tasks can be executed autonomously, allowing high level tasking of single and multiple UAVs in formation, with the formation commanded as a single entity.