
ABSTRACT

Unmanned aerial vehicles (UAV) have seen a rapid growth in utili-
sation for reconnaissance, mostly using single UAVs. However,
future utilisation of UAVs for applications such as bistatic synthetic
aperture radar and stereoscopic imaging, will require the use of
multiple UAVs acting cooperatively to achieve mission goals. In
addition, to de-skill the operation of UAVs for certain applications
will require the migration of path-planning functions from the
ground to the UAV. This paper details a computationally efficient
algorithm to enable path-planning for single UAVs and to form and
re-form UAV formations with active collision avoidance. The algo-
rithm presented extends classical potential field methods used in
other domains for the UAV path-planning problem. It is demon-
strated that a range of tasks can be executed autonomously, allowing
high level tasking of single and multiple UAVs in formation, with
the formation commanded as a single entity. 

NOMENCLATURE

A vector potential
C set of obstacles
e unit vector
f, F shaping functions
G goal point
Q field strength
R UAV
S start point
u velocity vector
V, v potential field, velocity vector
W workspace
x UAV position vector
∆ position relative to lead UAV
λ controller inverse time constant
υ UAV speed
ψ UAV heading

1.0 INTRODUCTION

Unmanned aerial vehicles have seen a rapid growth in use for recon-
naissance applications with a wide range of vehicle types and capa-
bilities fielded. Most current UAV types require a fixed base-station
to up-link way-points to the UAV, which have been determined by a
human operator, or possibly by path-planning software hosted by the
base-station. As the use of UAVs becomes more commonplace,
there is a requirement to de-skill the operation of UAVs to allow
untrained operators to use these systems in the field with a minimum
of ground equipment. This will require much of the path-planning
capability to reside on the UAV with the operator up-linking only
high-level goals, which must then be autonomously executed. Such
autonomous path-planning must operate in near real-time, must be
computationally efficient and must be validated to ensure that the
UAV safely achieves its goal. 

Future UAV systems will also see the use of multiple UAVs used
in formation for tasks such as bistatic synthetic aperture radar and
stereoscopic imaging. These systems will require path-planning
algorithms which can form and re-form the UAVs while enforcing
collision avoidance between members of the formation. In order to
plan such reconfigurations as a top-down process is unwieldy for
large numbers of UAVs. For example, a group of N UAVs would
require N(N – 1) constraint checks for collision avoidance in addi-
tion to N goal satisfaction checks, so that the problem scales as N2.
However, for a distributed algorithm the problem scales as N – 1 for
each member of the formation. In addition, distributed planning
algorithms are inherently more robust and can cope with adding or
removing members from the formation without significantly modi-
fying the manner in which the algorithm operates.

The particular scenario envisaged here is for UAVs (possibly
micro-air vehicles) using an on-board digital map along with GPS
and inertial navigation to manoeuvre in a complex and cluttered
environment. The algorithm presented can transform a map of path
constraints and goals into a velocity field, with any path through the
velocity field guaranteed to be collision-free and to reach the goal.
The algorithm is able to generate such paths for a single UAV or for

Velocity field path-planning for single and
multiple unmanned aerial vehicles

C. R. McInnes

Department of Aerospace Engineering

University of Glasgow

Glasgow, UK



multiple UAVs, where each UAV has information on the state of
other members of the formation through cross-links. For multiple
UAVs, each member of the formation views the other members as
mobile obstacles, while the formation configuration is defined
through a set of mobile goals towards which each UAV manoeuvres.

Initially a single UAV R will be considered moving in a struc-
tured workspace W∈ℜ2, where the UAV position in W is repre-
sented by a vector x = (x 1, x 2), as shown in Fig. 1. The workspace
has a set of static obstacles C: xC = ( x̃1, x̃2) with boundary ∂C, a
start point S: xs = (x1s, x2s) and a goal point G: xG = (x1G, x2g)
towards which R manoeuvres. The UAV will be considered to be
point-like with bank-to-turn control which can track a heading
command, up to some turning rate limit, and a throttle control which
can track a speed command. Since W is in ℜ2 the UAV will
manoeuvre at a fixed altitude, although extensions of the method to
ℜ3 are possible. A path-planning algorithm is now sought which can
translate R from S to G without crossing the obstacle boundaries ∂C.
An extension of the classical potential field method will be consid-
ered here. To broaden the analysis to multiple UAVs in formation,
the set of obstacles C may also be mobile, with each UAV viewing
other UAVs in the formation as an obstacle. In addition, the goal G
may be also be mobile and may be referenced to the lead UAV in the
formation, to enable leader-follower behaviour, or the goal may be
referenced to some function of the state of the UAV formation to
provide de-centralised control.

The classical application of the potential field method requires an
artificial potential function V to be superimposed on W(1-4). The
potential function is chosen such that it has a single global minimum
at G and its gradient field –∇V directs R safely away from C towards
G for any start point S∈W. However, for heuristically generated
potential functions there may be a set of local minima which can trap
R in an equilibrium position (∇V = 0) other than G. To avoid such
local minima V can be generated as a solution to the Laplace equa-
tion (∇2V = 0)(3,4). The resulting artificial potential function then has
the appealing properties of linearity and uniqueness, while its
maxima and minima can only occur on the boundaries of the
domain. Therefore, the potential is free of local minima and so trap-
ping at positions other than G cannot occur. A more ‘aggressive’
form of path-planning has also been proposed by utilising vortex
functions(5-9). The vortex potential is also a solution to the Laplace
equation and is used to generate a solenoidal gradient field which is

again free from local minima. Vortex functions also provide a
consistent, preferred direction for circumnavigating the obstacle set
C. However, previous applications of vortex methods have relied on
heuristics to blend the gradient and vortex fields. Such heuristic
approaches do not lend themselves to rigorous validation. 

In this paper vortex functions are extended and used as the basis
for a distributed path-planning algorithm for single and multiple
UAVs. The first new finding is that the vortex field can be shaped by
a scalar function to rapidly truncate its effects beyond the vicinity of
the obstacle boundary. The resulting velocity field has zero diver-
gence and so can still in principle satisfy the Laplace equation with
its appealing properties. It is also demonstrated that complex, non-
symmetric obstacles can also be represented as a solenoidal velocity
field, which greatly enhances the use of vortex functions as a path-
planning tool. In particular, obstacles can be added to or deleted
from the workspace without re-planning the entire UAV path, as
would be required by other path-planning algorithms. This is an
important capability, which allows the addition of new path planning
information as it becomes available. In addition, since the global
velocity field can be generated analytically, the on-board computa-
tional overhead to implement the algorithm is minimal, allowing
autonomous operations with on-board path-planning. While not
necessarily fuel or time optimum,(10) the benefits of the potential
field method have been recognised for other problem domains(11) and
indeed the method has been applied to related air traffic management
problems(9,12). Again, the key advantage for UAV applications is the
ability of the method to generate guaranteed collision-free paths in
complex workspaces with a minimal computational overhead.

Lastly, it is shown that the vortex velocity field can be derived
from a vector potential which can also be extended to represent
complex, non-symmetric obstacles by a solenoidal field.
Helmholtz’s theorem is then invoked to demonstrate that the sole-
noidal field component represented by the vector potential, used to
enforce collision avoidance, can be systematically combined with
gradient fields generated from scalar potential functions, used to
manoeuvre R towards G, in a rigorous way. The utility of the algo-
rithm is explored by considering a number of path-planning prob-
lems for single and multiple UAVs in formation. 

2.0 VORTEX FUNCTIONS

The Laplace equation has been widely used to generate artificial
potential functions for mobile robot path-planning either by a numer-
ical grid solution or by utilising a limited class of analytical
solutions(3,4). Solutions to the Laplace equation have the useful prop-
erty that only a single global minimum will exist at the goal point of
the workspace G. The Laplace equation is defined by

`

with two types of analytic solution in ℜ2. Type I solutions represent
an irrotational source or sink whereas type II solutions represent a
solenoidal source. The type I solutions with a sink term can be used
to generate a potential which will drive R towards G, while the type I
source and type II functions can be used to direct R away from C and
so enforce collision avoidance using

Figure 1. Schematic geometry of the UAV workspace.
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It can be shown that the strength of the type I potential function QI

may be chosen to satisfy an exclusion zone of radius ε about an
obstacle using Equation (2c)(4). Since the type II potential function is
not single-valued there is however no corresponding relationship for
the strength QII. These scalar functions are then used to generate
velocity fields through the gradient operator –∇V as

where it can be shown that both velocity fields have null divergence

since they are both generated from solutions to the Laplace equation. 
Although there is no relationship for the strength QII, it will now

be shown that it is possible to truncate the type II velocity field by a
scalar shaping function ƒ while ensuring that the resulting new
velocity field still has null divergence. Therefore, if we postulate that
the new velocity field is derived from the gradient of some potential,
this potential will satisfy the Laplace equation. Since only the
gradient of the field is to be used, the potential can however remain
unknown. A new velocity field ƒvII will therefore be considered with
ƒ chosen such that the field has null divergence so that

Therefore, since ∇.v11 = 0 the following property is required of the
shaping function ƒ

It is clear then that ∇ƒ and vII must be normal, as shown Fig. 2(a).
Since vII is solenoidal, ƒ must therefore be a function of the radial
distance ξ from the centre of the vortex. However, in addition to
such azimuthally symmetric functions, it is also possible to generate
solenoidal fields for more complex objects through a particular
construction of the velocity field vII. In particular, if vII is defined as

then it is clear that the condition ∇ƒ.vII = 0 is always satisfied for any
smooth scalar function f, as shown in Fig. 2(b). Therefore, by a suit-
able choice of function ƒ, the magnitude of individual symmetric
vortex functions ƒvII can be rapidly truncated so that vortices may
be superimposed without overlapping influence. Or indeed, more
complex solenoidal fields can be generated through a suitable choice
of f and the construction of the velocity field using Equation (6).
Truncating the effect of the vortex velocity field in a smooth, contin-
uous manner will also allow complex velocity fields to be generated
without discrete switching of components of the velocity field as
obstacles are approached. Such discrete switching leads to complex
hybrid control problems where stability is difficult to ensure. The
resulting global velocity field generated here however will be
smooth and will have null divergence, so in principle retaining the
properties of the Laplace equation, as discussed above.

In order to use any of the velocity fields discussed above, a field
strength or shaping function f must be determined which rapidly
truncates the effect of the field and ensures that R does not cross the
boundary ∂C of the obstacle set C. For a type I irrotational field,
such as that defined by Equation (2a), the field strength QI may be
chosen to satisfy an exclusion zone about an obstacle, as defined by
Equation 2(c). An example of the resulting velocity field is shown in

Figure 2(a). Relationship between a symmetric solenoidal field and
shaping function ƒ.

Figure 2(b). Relationship between an asymmetric solenoidal field and
shaping function ƒ.
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Fig. 3(a). For a symmetric vortex field, the velocity field itself must

be shaped to form ƒvII. A suitable function for shaping a symmetric

vortex field is found to be 

where ξ̃ is the radius of influence of the vortex field, which is chosen

to enclose the obstacle. If m >> 1 then f switches in a rapid, but

continuous manner from 1 to 0 as the radius of influence of the

vortex field is crossed, as shown in Fig. 3(b). For a more complex

obstacle, the obstacle boundary ∂C may be mapped by f and a sole-

noidal velocity field generated using the construction of Equation
(6). For example, a superquadratic function(13) may be used to map a
square obstacle using

where n >> 1 to ensure a sharp edge to the obstacle boundary ∂C.
Using Equation (6), and Equation (8) as a generating function, the
resulting solenoidal velocity field is found to be

While the shaped velocity field ƒvII has null divergence, as discussed
earlier, it also possible to shape the velocity field defined by Equa-
tion (9) in a different manner to form a new velocity field F(H)vII,
where the function F is a function of H only. With this construction
it can be shown that ∇.(FvII) = 0 since

where again ∇.vII = 0 by definition. Then, using Equations (6) and
(8) it can be seen that

A suitable function for shaping the superquadratic solenoidal field is
found to be 

where L is the length scale of the superquadratic, which is chosen to
enclose the obstacle. Again, if m >> 1 then F switches in a rapid, but
continuous manner from 1 to 0 as the edge of the superquadratic side
is crossed, as shown in Fig. 3(c).

Figure 3(a). Velocity field generated by an irrotational type I potential.

Figure 3(b). Velocity field generated by a solenoidal type II potential.

Figure 3(c). Velocity field resulting from a superquadratic generating
function.
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3.0 VECTOR POTENTIALS

The vector potential is used extensively in electromagnetic theory to
represent currents which generate solenoidal magnetic fields(14). As
such it also offers a systematic and rigorous means of generating
solenoidal fields for path-planning problems. For a vector potential
A the resulting velocity field will be defined as

where the vector potential is obtained by integration from the Biot-
Savart law(14). It can be seen from Equation (13) that the vector poten-
tial is not uniquely defined. Any quantity with zero vector curl can be
added to the potential without affecting the resulting velocity field. 

To illustrate the method, the symmetric shaped vortex function
discussed in Section 2 will now be considered with a vector potential
defined by

where, using the Biot-Savart law(14), it is found that

where K is an arbitrary constant of integration. The resulting velocity
field is then obtained from Equation (13) as

where φ′ = f(ξ)/ξ so that the shaped vortex velocity field is recovered
as expected such that

From Equation (15) it is clear that only the shaping function f is
required to generate the vector potential and so the resulting sole-
noidal field. Therefore, for complex obstacles a solenoidal field may
be generated by using a more complex scalar function, such as a
superquadratic, to represent the shape of the obstacle, as discussed in
Section 2. The vector potential then gives a rigorous and systematic
means of generating a solenoidal velocity field from a scalar func-
tion. In addition, the vector potential may now be used with
Helmholtz’s theorem (a detailed proof of which is given else-
where(15)) to generate global velocity fields. 

Theorem: A vector field with both source and circulation densi-
ties vanishing at infinity may be written as the sum of two parts, one
of which is irrotational the other solenoidal(15).

Helmholtz’s theorem therefore allows a composite velocity field
with an attractive goal potential centred on G and solenoidal vector
potentials to represent the set of obstacles C to be written as

The properties of the vector field defined by Equation (18) can be
investigated by calculating the divergence of the field as

Clearly the first term of Equation (19) will vanish since the potential
VI satisfies the Laplace equation. However, it is a vector property
that the divergence of any solenoidal field vanishes so that

Therefore, it has been shown that ∇.v = 0 so that the global field has null
divergence. If we again postulate that the field can, in principle, be

derived as the gradient of a scalar potential, then the potential will

satisfy the Laplace equation and so will be free of local minima. Again,

since only the gradient is being used, the form of the actual potential can

remain unknown. The gradient field will therefore have a unique goal

point G, which will be reached by R from any start point S∈W without

trapping or collision with the obstacle set C. We now have a rigorous

and systematic means of generating velocity fields which can be used to

provide path-planning for negotiating complex obstacles. 

Lastly, it is clear from Figs 3(b) and 3(c) that for a rapidly trun-

cating function f the resulting behaviour of R as it manoeuvres from

S to G is similar to edge following. Edge following is a simple and

effective means of sensory based navigation used by mobile robots

for negotiating obstacles in a closed workspace. For a set of obsta-

cles in a workspace, topology ensures that edge following guarantees

negotiation of the obstacles. This can be seen from the strong

analogy with escape from a maze — with one hand in contact with a

wall of the maze, the maze topology guarantees that an exit will

always be reached. Similarly, the solenoidal fields generated about

obstacles provide a consistent direction for negotiation along the

edges of those obstacles with resulting motions about C and towards

G from any point S. Therefore, the ability of edge following to

provide an effective means of obstacle negotiation without trapping

can be seen as equivalent to the property of the solenoidal vector

field and the Laplace equation that no local minima are generated.

4.0 VELOCITY FIELD TRACKING

The velocity field to be used to command the UAV will be generated

by normalising v to provide a unit vector field. This unit vector field

provides a unique heading command, with the UAV speed being

controlled independently, as will be discussed below. The desired

UAV velocity vector u = (u1, u2) will now be defined as

where the function κ is a scalar function used to control the UAV

speed. In particular, κ can defined to be inversely proportional to the

curvature of the path to allow tracking of the desired velocity field

without actuator saturation through turning rate limits. In order to

generate commands for the UAV, the required velocity u will be

resolved into a scalar speed command υc and heading command ψc as

Since the detailed responses of the UAV will not be considered here,

these commands are assumed to be effected through a simple first

order control with saturation, such that

where the constants λυ and λψ are the inverse time constants of the UAV

response to commanded changes in speed and heading. The motion of

the UAV will then be propagated through the velocity field using Equa-

tions (22) and (23) and by integrating the kinematic relations

In order to provide a realistic response, the maximum UAV turn rate

ψ. max is defined as 10°s–1 and the maximum acceleration υ
.

max defined

as 0⋅1 g. The time constants are defined as λψ
–1 = 1s for the heading

controller and λυ
–1 = 10s for the speed controller.
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5.0 IMPLEMENTATION

In order to illustrate the use of the solenoidal vector fields generated

in Sections 2 and 3, a single UAV will be considered manoeuvring

from S to G without crossing the boundary ∂C of a set of static

obstacles C. The UAV uses the first order controller, time constants

and saturation limits defined in Section 4. A set of three obstacles

will be defined using the type II velocity field, with two symmetric

vortices and a superquadratic generating function used to ensure that

the boundaries of the obstacles are not crossed, as shown in Fig.

4(a). Here, the size of the obstacles have been extended by the

turning radius of the UAV (υ
.

max/ψ
.

max) to ensure collision avoidance

in the presence of controller saturation. In addition, the goal G is

represented through a type I velocity field 

It can be seen that the UAV successfully negotiates the obstacles and
reaches the goal G without collision. Since a lag is introduced in
heading changes, the UAV does not pass exactly through G. At the
end point of the path the UAV passes the goal and executes a left
turn to pass the goal again. Subsequent passes are made as the
velocity field forces the AUV to loiter in the vicinity of the goal. In
this example the UAV speed has been fixed at 20ms–1 so that the
only active control is the UAV heading, as shown in Fig. 4(b). It can
be seen that a series of turns are commanded by the algorithm to
avoid the set of obstacles, with a final left turn towards the goal.

6.0 EXTENSION TO UAV FORMATIONS

The algorithm will now be extended to a group of N UAVs flying in
formation. The UAV formation-flying problem has been investi-
gated previously, although emphasis has been on maintaining forma-
tions(16,17) rather than re-configuration with collision avoidance
between members of the formation. Those methods which do
consider re-configuration and rely on centralised planners are found
to be computationally intensive(18). 

The extension of the velocity field algorithm to UAV formations
can be achieved using a range of schemes. However, the simplest
scheme to implement is for each UAV to treat the remaining N–1
UAVs as a set of mobile obstacles C and to reference the goal G for
each UAV to a designated lead UAV. If the lead UAV has some
instantaneous position xL = (x1L, x2L) and the formation is defined
such that the ith UAV has a position (∆i = (∆1i, ∆2i)(i = 1 – (N–1))
relative to the lead UAV, the goal velocity field for the ith UAV is
defined by a type I velocity field of the form

Figure 4(a). Single UAV manoeuvering from a start point S to a goal
point G with a set C of three obstacles (o - 10 s time steps).

Figure 4(b). UAV heading time history.

Figure 5(a). Re-formation of a group of three UAVs 
(o � 100s time steps).
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with the remaining UAVs represented as mobile type II velocity

fields. If required, the set of vectors ∆i = (∆1i, ∆2i) can be rotated by

the heading angle of the lead UAV to ensure that the formation

rotates as a rigid body when the lead UAV turns. The speed of each

member of the UAV formation can also be referenced to the lead

UAV to ensure that the relative speed between the lead UAV and

other UAVs in the formation will converge. For example, the

following function for the speed of the ith (i = 1 – (N – 1)) UAV

allows the UAVs to converge on the lead UAV while enforcing

speed constraints 

where η is a parameter which shapes the rate of convergence of the

UAV speed to the lead UAV and υmax is the maximum enforced

UAV speed. With this definition υi > υL (i = 1 – (N – 1)) so that a
minimum speed is also enforced. Since it is assumed that the speed
of the lead UAV will never fall below stall speed, the stall speed
constraint is then enforced through the entire formation.

An example of a re-formation manoeuvre with three UAVs is
shown in Fig. 5(a). Here the lead UAV (A) maintains a constant
heading and speed of 20ms–1 while B and C swap places in the
formation. Due to the symmetry of this manoeuvre a collision
between B and C would normally result. However, the UAVs turn to
avoid each other, as shown in Fig. 5(b). The type II velocity fields
associated with each UAV have been shaped using Equation (7) to
enforce a minimum separation of 500m, as shown in Fig. 5(c). The
speed of each UAV is also scaled using Equation (27) relative to the
lead UAV speed of 20ms–1 and a maximum speed which has been
defined as 30ms–1, as shown in Fig. 5(d). A final example is shown
in Fig. 6 where a triangular UAV formation negotiates an obstacle
represented using a superquadratic generating function. Here it can
be seen that as the lead UAV (A) manoeuvres to avoid the obstacle,
B is displaced since it is referenced to A and so does not encounter

Figure 5(b). UAV formation heading time history.

Figure 5(c). UAV formation separation time history.

Figure 5(d). UAV formation speed time history.

Figure 6. UAV formation manoeuvre at a single obstacle 
(o � 10s time steps).
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the obstacle. However, C does encounter the obstacle and falls in
behind the lead UAV until the obstacle is successfully negotiated
and the triangular formation can re-form.

7.0 CONCLUSIONS

A velocity field approach to UAV path-planning has been presented
which allows single or multiple UAVs to manoeuvre between a start
point S and goal point G without collision with static obstacles or
other UAVs in a formation. Unlike heuristic path-planning algo-
rithms, the velocity field algorithm presented here is based on math-
ematical rigour in that the properties of the Laplace equation can be
invoked to demonstrate that the field will generate a unique path
which is guaranteed to reach the goal G. In addition, since the
velocity field can be generated analytically, the computational over-
head to implement the algorithm is minimal, allowing autonomous
operations with on-board path-planning. 
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