Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Astronautical engineering revisited: planetary orbit modification using solar radiation pressure

McInnes, C.R. (2002) Astronautical engineering revisited: planetary orbit modification using solar radiation pressure. Astrophysics and Space Science, 282 (4). pp. 765-772. ISSN 0004-640X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As the Sun evolves along the main sequence its luminosity will grow, leading to a steadily increasing solar flux at the Earth with corresponding catastrophic consequences for the biosphere. A novel means of avoiding this terminal route to human evolution has recently been proposed by Korycansky et al. which utilises a series of grazing fly-pasts of the Earth with a small solar system body to increase the orbit radius of the Earth over a timescale of order 109 years. This short paper will propose an alternative strategy which utilises a large reflective sail to generate a propulsive thrust due to solar radiation pressure. It will be shown that if the sail is configured to be in static equilibrium relative to the Earth, the centre-of-mass of the Earth-sail system slowly accelerates. This scheme offers some advantages in that the mass of the sail is four orders of magnitude less than the mass to be processed in the scheme of Korycanskyet al. for trajectory correction manoeuvres alone. In addition, the severe hazard posed by multiple grazing fly-pasts of the Earth by a small solar system body is avoided. Although offering significant advantages, any thoughts of engineering on an astronomical scale clearly requires a leap of the imagination and a ready use of liberal assumptions.