Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers

Hughes, Gareth W. and McInnes, Colin (2002) Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. Journal of Guidance, Control and Dynamics, 25 (3). pp. 602-604. ISSN 1533-3884

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

SOLAR sails have long been seen as an attractive concept for low-thrust propulsion.They transcend reliance on reaction mass and have the ability to provide a small, but continuous, acceleration. Because propellant mass is not an issue, high-performance sails can enable new exotic non-Keplerianor bits (NKOs)1 that are not feasible for conventional chemical or electric propulsion.A constant out-of plane sail force is utilized to raise the spacecraft's orbit high above the ecliptic plane in two- or three-body systems. Potential beneŽfits to the science community are large. Circular, displaced orbits can be used to provide continuous observation of the solar poles or to provide a unique vantage point for infrared astronomy. (There is much less resolution-limiting dust out of the ecliptic plane enabling smaller telescope mirror dimensions for equivalent performance.) Very high performance sails can even levitate, in equilibrium, at any point in space.