Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Practical application of direct electron detectors to EBSD mapping in 2D and 3D

Mingard, K.P. and Stewart, M. and Gee, M.G. and Vespucci, S. and Trager-Cowan, C. (2018) Practical application of direct electron detectors to EBSD mapping in 2D and 3D. Ultramicroscopy, 184 (Part A). pp. 242-251. ISSN 0304-3991

[img] Text (Mingard-etal-Ultramicroscopy2017-Practical-application-of-direct-electron-detectors-to-EBSD)
Mingard_etal_Ultramicroscopy2017_Practical_application_of_direct_electron_detectors_to_EBSD.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 28 September 2018.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Request a copy from the Strathclyde author

Abstract

The use of a direct electron detector for the simple acquisition of 2D electron backscatter diffraction (EBSD) maps and 3D EBSD datasets with a static sample geometry has been demonstrated in a focused ion beam scanning electron microscope. The small size and flexible connection of the Medipix direct electron detector enabled the mounting of sample and detector on the same stage at the short working distance required for the FIB. Comparison of 3D EBSD datasets acquired by this means and with conventional phosphor based EBSD detectors requiring sample movement showed that the former method with a static sample gave improved slice registration. However, for this sample detector configuration, significant heating by the detector caused sample drift. This drift and ion beam reheating both necessitated the use of fiducial marks to maintain stability during data acquisition.