Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Practical application of direct electron detectors to EBSD mapping in 2D and 3D

Mingard, K.P. and Stewart, M. and Gee, M.G. and Vespucci, S. and Trager-Cowan, C. (2018) Practical application of direct electron detectors to EBSD mapping in 2D and 3D. Ultramicroscopy, 184 (Part A). pp. 242-251. ISSN 0304-3991

[img]
Preview
Text (Mingard-etal-Ultramicroscopy2017-Practical-application-of-direct-electron-detectors-to-EBSD)
Mingard_etal_Ultramicroscopy2017_Practical_application_of_direct_electron_detectors_to_EBSD.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

The use of a direct electron detector for the simple acquisition of 2D electron backscatter diffraction (EBSD) maps and 3D EBSD datasets with a static sample geometry has been demonstrated in a focused ion beam scanning electron microscope. The small size and flexible connection of the Medipix direct electron detector enabled the mounting of sample and detector on the same stage at the short working distance required for the FIB. Comparison of 3D EBSD datasets acquired by this means and with conventional phosphor based EBSD detectors requiring sample movement showed that the former method with a static sample gave improved slice registration. However, for this sample detector configuration, significant heating by the detector caused sample drift. This drift and ion beam reheating both necessitated the use of fiducial marks to maintain stability during data acquisition.