Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Al-Li alloys – the analysis of material behaviour during industrial hot forging

Bylja, Olga and Gomez-Gallegos, Ares and Stefani, Nicola and Blackwell, Paul (2017) Al-Li alloys – the analysis of material behaviour during industrial hot forging. Procedia Engineering, 207. pp. 7-12. ISSN 1877-7058

[img]
Preview
Text (Bylya-etal-PE-2017-Al-Li-alloys-the-analysis-of-material-behaviour)
Bylya_etal_PE_2017_Al_Li_alloys_the_analysis_of_material_behaviour.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

Al-Li alloys are a promising class of aerospace materials that combine light weight with high strength, comparable to those of steels. In the case of critical components, it is well known that providing the required reliability is impossible without tailoring the output microstructure of the material. This, in turn, requires a clear understanding of the logic behind microstructure formation depending on the total processing history (especially temperature and strain-rate history). However, uniaxial isothermal laboratory tests provide very limited information about the material behaviour. Real forging processes, especially involving complex geometries, sometimes develop quite complicated temperature-strain-rate paths that vary across the deformed part. A proper analysis of the microstructural transformations taking place in the material under these conditions is therefore very important. In this paper, the correlation between the loading history and microstructural transformations was analysed for AA2099 alloy using the hot forging of a disk-shaped component at selected forging temperatures and strain rates. The obtained results were compared to industrial processing maps based on uniaxial tests.