Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Considerations in the development of flexible CCS networks

Wetenhall, Ben and Race, Julia and Aghajani, Hamed and Sanchez Fernandez, Eva and Naylor, Mark and Lucquiaud, Mathieu and Chalmers, Hannah (2017) Considerations in the development of flexible CCS networks. Energy Procedia, 114. pp. 6800-6812. ISSN 1876-6102

Text (Wetenhall-etal-EP-2017-Considerations-in-the-development-of-flexible)
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (552kB) | Preview


This paper discusses considerations for the design of flexibly operated Carbon Capture and Storage (CCS) pipeline networks and is based on the findings of the Flexible CCS Network Development project (FleCCSnet), funded by the UK CCS Research Centre. The project considered the impact of flexibility across the whole CCS chain, as well as studying the interfaces between each element of the system; e.g. at the entry to the pipeline system from the capture plant and at the exit from the pipeline to the storage site. The factors identified are intended to allow CCS network designers to determine the degree of flexibility in the system, allowing them to react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants and the constraints imposed on the system by CO2 storage sites. The work of the project is reviewed in this paper which explores the flexibility of power plants operating with post combustion capture systems; quantifies the available time to store (line pack) liquid CO2 in the pipeline as a function of pipeline size, the inlet mass flow rate and operating pressure; and explores the influence that uncertainty in storage parameters have on the design of the pipeline. In addition, parameters influencing short and longer term network designs are discussed in terms of varying flow rates. Two workshops contributed to the direction of the project. The first workshop identified and confirmed key questions to be considered in order to understand the most likely impacts of variability in the CO2 sources and variability in CO2 sinks on CO2 transport system design and operation. The second workshop focused on transient issues in the pipeline and storage site. Although the case studies in the work are UK based, this work is applicable to other situations where large and small sources of CO2 feed into a transportation system. The work is expected to inform a broad range of stakeholders and allow network designers to anticipate potential problems associated with the operation of a CCS network. For an effective design of CCS infrastructure, all of the factors that will have a substantial impact on CO2 flow will have to be analysed at an early stage to prevent possible bottle necks in the whole chain.