Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

A coupled CFD/Multibody Dynamics analysis tool for offshore wind turbines with aeroelastic blades

Liu, Yuanchuan and Xiao, Qing and Incecik, Atilla (2017) A coupled CFD/Multibody Dynamics analysis tool for offshore wind turbines with aeroelastic blades. In: 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017-06-25 - 2017-06-30.

[img]
Preview
Text (Liu-etal-OMAE2017-A-coupled-CFD-multibody-dynamics-analysis-tool-for-offshore)
Liu_etal_OMAE2017_A_coupled_CFD_multibody_dynamics_analysis_tool_for_offshore.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Aero-elasticity is an important issue for modern large scale offshore wind turbines with long slender blades. The behaviour of deformable turbine blades influences the structure stress and thus the sustainability of blades under large unsteady wind loads. In this paper, we present a fully coupled CFD/MultiBody Dynamics analysis tool to examine this problem. The fluid flow around the turbine is solved using a high-fidelity CFD method while the structural dynamics of flexible blades is predicted using an open source code MBDyn, in which the flexible blades are modelled via a series of beam elements. Firstly, a flexible cantilever beam is simulated to verify the developed tool. The NREL 5 MW offshore wind turbine is then studied with both rigid and flexible blades to analyse the aero-elastic influence on the wind turbine structural response and aerodynamic performance. Comparison is also made against the publicly available data.