Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Alkali metal cation-pi interactions stabilized solely by [M{N(SiMe3)(2)}(3)](-) anions (M = Mg or Zn): The competing influence of alkali metal center dot center dot center dot C(Me) agostic interactions

Forbes, G.C. and Kennedy, A.R. and Mulvey, R.E. and Roberts, B.A. and Rowlings, R.B. (2002) Alkali metal cation-pi interactions stabilized solely by [M{N(SiMe3)(2)}(3)](-) anions (M = Mg or Zn): The competing influence of alkali metal center dot center dot center dot C(Me) agostic interactions. Organometallics, 21 (23). pp. 5115-5121. ISSN 0276-7333

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A series of [K(ar)(2)](+) and [Rb(toluene)(3)](+) cations (ar = benzene, toluene, o-xylene, or p-xylene) has been synthesized and crystallized in the presence of [M{N(SiMe3)(2)}(3)](-) anions (M = Mg or Zn). In the solid state all form either extended supermolecular, dimeric or supramolecular, polymeric structures. Only [K(toluene)(2)][Mg{N(SiMe3)(2)}(3)] was found to exist as both suprastructural isomers. Introducing cyclopentadienyl to the system gave a similar zincate with the unusual [K2CP](+) cation. The absence of any traditional Lewis bases facilitates' short metal-to-arene contact distances and makes these species excellent candidates for the study of alkali metal cation-pi interactions. It is shown that K-pi interactions and to a lesser extent Rb-pi interactions are heavily influenced by the number and nature of agostic methyl interactions, especially when the electron-donating ability of these is maximized by adoption of near-linear geometries. These features combine so that the weakest potassium-to-arene interaction observed is that with benzene.