New periodic orbits in the solar sail restricted three body problem

Biggs, J.D. and McInnes, C. and Waters, Thomas (2008) New periodic orbits in the solar sail restricted three body problem. In: 2nd Conference on Nonlinear Science and Complexity, 2008-07-28 - 2008-07-31.

[img]
Preview
Text (strathprints006056)
strathprints006056.pdf
Accepted Author Manuscript

Download (362kB)| Preview

    Abstract

    In this paper we consider periodic orbits of a solar sail in the Earth-Sun restricted three-body problem. In particular, we consider orbits which are high above the ecliptic plane, in contrast to the classical Halo orbits about the collinear equilibria. We begin with the Circular Restricted Three-Body Problem (CRTBP) where periodic orbits about equilibria are naturally present at linear order. Using the method of Lindstedt-Poincaré, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the Elliptic Restricted Three Body Problem (ERTBP). A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e = 0 and continuing to the required eccentricity of e = 0:0167. The stability of these periodic orbits is investigated.