Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Surrogate model for probabilistic modeling of atmospheric entry for small NEO's

Mehta, Piyush M. and Kubicek, Martin and Minisci, Edmondo and Vasile, Massimiliano (2016) Surrogate model for probabilistic modeling of atmospheric entry for small NEO's. In: Spaceflight Mechanics 2016. Advances in the Astronautical Sciences . American Astronautical Society, San Diego, California, pp. 1807-1822. ISBN 9780877036333

[img]
Preview
Text (Mehta-etal-SFMM-2016-Surrogate-model-for-probabilistic-modeling-of-atmospheric-entry-for-small-NEOs)
Mehta_etal_SFMM_2016_Surrogate_model_for_probabilistic_modeling_of_atmospheric_entry_for_small_NEOs.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Near Earth Objects (NEOs) enter the Earths atmosphere on a regular basis. Depending on the size, object and entry parameters; these objects can burn-up through ablation (complete evaporation), undergo fragmentation of varying nature, or impact the ground unperturbed. Parameters that influence the physics during entry are either unknown or highly uncertain. In this work, we propose a probabilistic approach for simulating entry. Probabilistic modeling typically requires an expensive Monte Carlo approach. In this work, we develop and present a novel engineering approach of developing surrogate models for simulation of the atmospheric entry accounting for drag, ablation, evaporation, fragmentation, and ground impact.