Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Dual-branch deep convolution neural network for polarimetric SAR image classification

Gao, Fei and Huang, Teng and Wang, Jun and Sun, Jinping and Hussain, Amir and Yang, Erfu (2017) Dual-branch deep convolution neural network for polarimetric SAR image classification. Applied Sciences, 7 (5). ISSN 2076-3417

[img]
Preview
Text (Gao-etal-AS-2017-Dual-branch-deep-convolution-neural-network-for-polarimetric-SAR-image-classification)
Gao_etal_AS_2017_Dual_branch_deep_convolution_neural_network_for_polarimetric_SAR_image_classification.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB) | Preview

Abstract

Deep convolution neural network (CNN), which has prominent advantages in feature learning, can learn and extract features from data automatically. Existing polarimetric synthetic aperture radar (PolSAR) image classification methods based on CNN only consider the polarization information of the image, instead of incorporating the image’s spatial information. In this paper, a novel method based on dual-branch deep convolution neural network (Dual-CNN) is proposed to realize the classification of PolSAR images. The proposed method is built on two deep CNNs: one is used to extract the polarization features from the 6-channel real matrix (6Ch) which is derived from complex coherency matrix. The other is utilized to extract the spatial features of Pauli RGB image. These extracted features are first combined into a fully connected layer sharing the polarization and spatial property. Then the Softmax classifier is employed to classify these features. The experiments are conducted on the AIRSAR data of Flevoland and the results show that the classification accuracy on 14 types of land cover is up to 98.56%. Such results are promising in comparison with other the state of the art methods.