Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Impact of arm morphology on the hydrodynamic behavior of a two-arm robotic marine vehicle

Kazakidi, Asimina and Tsakiris, Dimitris P. and Ekaterinaris, John A. (2017) Impact of arm morphology on the hydrodynamic behavior of a two-arm robotic marine vehicle. In: IFAC 2017 World Congress, 2017-07-09 - 2017-07-14. (In Press)

Text (Kazakidi-etal-IFAC2017-Impact-of-arm-morphology-on-the-hydrodynamic-behavior)
Kazakidi_etal_IFAC2017_Impact_of_arm_morphology_on_the_hydrodynamic_behavior.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (1MB) | Preview


Increasing the functionality and efficiency of small underwater marine robotic systems has been a significant challenge, particularly regarding their use in tasks requiring enhanced maneuverability, long-distance travel and delicate underwater manipulation of objects. In this paper, we explore the impact of bio-inspired arm morphology on underwater propulsion, through examination of the generated hydrodynamic forces and the corresponding complex vortical patterns in the wake of a novel two-arm underwater robotic swimmer, inspired by the octopus arm-swimming behavior. We demonstrate for the first time, via detailed modelling and CFD studies, the use of a variety of slender arm morphologies as thrust actuators in a system that can achieve forward propulsion, by the slow opening and rapid closing of these arms ("arm sculling"), while minimizing the lateral excursion of the system. Robotic prototypes, based on such principles, have already been used by our group to observe marine ecosystems, without disturbing them as much as current ROVs. Further applications of such robotic systems could be envisioned in future medical rehabilitation studies.