Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Combustion modelling of pulverized biomass particles at high temperatures

Li, Jun and Paul, Manosh C. and Younger, Paul L. and Watson, Ian and Hossain, Mamdud and Welch, Stephen (2015) Combustion modelling of pulverized biomass particles at high temperatures. Energy Procedia, 66. pp. 273-276. ISSN 1876-6102

[img]
Preview
Text (Li-etal-EP-2015-Combustion-modelling-of-pulverized-biomass-particles)
Li_etal_EP_2015_Combustion_modelling_of_pulverized_biomass_particles.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (453kB)| Preview

    Abstract

    Biomass co-firing is becoming a promising solution to reduce CO2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behaviour, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is developed in this work, to predict the mass loss properties and temperature profile during the biomass devolatilization and combustion processes, by solving the energy and mass transport equations. The biomass devolatilization reaction was simulated by a two-competing-rate model and the biomass char burnout rate was controlled by both kinetics and diffusion to predict the particle size changes. The resulting predicted temperature profiles show good agreement with experimental data. The results also shed light on the effects of biomass particle size, air temperature and oxygen concentrations on biomass particle combustion behaviour.