Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Performance analysis of modified asymmetrically-clipped optical orthogonal frequency-division multiplexing systems

Mohamed, Salma D. and Shalaby, Hossam M.H. and Andonovic, Ivan and Aly, Moustafa H. (2016) Performance analysis of modified asymmetrically-clipped optical orthogonal frequency-division multiplexing systems. Optics Communications, 380. pp. 61-68. ISSN 0030-4018

[img]
Preview
Text (Mohamed-etal-OC-2016-Performance-analysis-of-modified-asymmetrically-clipped-optical-orthogonal)
Mohamed_etal_OC_2016_Performance_analysis_of_modified_asymmetrically_clipped_optical_orthogonal.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (736kB) | Preview

Abstract

A modification to the Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing (ACO-OFDM) technique is proposed through unipolar encoding. A performance analysis of the Bit Error Rate (BER) is developed and Monte Carlo simulations are carried out to verify the analysis. Results are compared to that of the corresponding ACO-OFDM system under the same bit energy and transmission rate; an improvement of 1 dB is obtained at a BER of 10-4. In addition, the performance of the proposed system in the presence of atmospheric turbulence is investigated using single-input multiple-output (SIMO) configuration and its performance under that environment is compared to that of ACO-OFDM. Energy improvements of 4 dB and 2.2 dB are obtained at a BER of 10-4 for SIMO systems of 1 and 2 photodetectors at the receiver for the case of strong turbulence, respectively.