Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Demonstration of fast-acting protection as a key enabler for more-electric aircraft interconnected architetctures

Kostakis, Theodoros and Norman, Patrick J. and Galloway, Stuart J. and Burt, Graeme M. (2016) Demonstration of fast-acting protection as a key enabler for more-electric aircraft interconnected architetctures. IET Electrical Systems in Transportation. ISSN 2042-9738

[img]
Preview
Text (Kostakis-etal-EST2017-Fast-acting-protection-as-a-key-enabler-for-more-electric-aircraft)
Kostakis_etal_EST2017_Fast_acting_protection_as_a_key_enabler_for_more_electric_aircraft.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Driven by anticipated fuel-burn and efficiency benefits, the more-electric aircraft (MEA) concept is a technological shift in the aviation industry, which seeks to replace mechanical, hydraulic and pneumatic functions with electrical equivalents. This shift has greatly increased the electrical power demands of aircraft and has made MEA networks larger and more complex. Consequently, new and more efficient electrical architectures are required, with interconnected generation potentially being one design approach that could bring improved performance and fuel savings. This study discusses the current state of interconnected generation in the aviation industry and key technological advances that could facilitate feasible interconnection options. This study demonstrates that interconnected systems can breach certification rules under fault conditions. Through modelling and simulation, it investigates the airworthiness-requirements compliance of potential impedance solutions to this issue and quantifies the potential impact on system weight. It concludes by identifying fast fault clearing protection as being a key enabling technology that facilitates the use of light-weight and standards-compliant architectures.