Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Large scale three-dimensional modelling for wave and tidal energy resource and environmental impact : methodologies for quantifying acceptable thresholds for sustainable exploitation

Gallego, A. and Side, J. and Baston, S. and Waldman, S. and Bell, M. and James, M. and Davies, I. and O'Hara Murray, R. and Heath, M. and Sabatino, A. and McKee, D. and McCaig, C. and Karunarathna, H. and Fairley, I. and Chatzirodou, A. and Venugopal, V. and Nemalidinne, R. and Yung, T.Z. and Vögler, A. and MacIver, R. and Burrows, M. (2017) Large scale three-dimensional modelling for wave and tidal energy resource and environmental impact : methodologies for quantifying acceptable thresholds for sustainable exploitation. Ocean and Coastal Management, 147. pp. 67-77. ISSN 0964-5691

[img]
Preview
Text (Gallego-etal-OCM2017-Large-scale-three-dimensional-modelling-for-wave-and-tidal-energy)
Gallego_etal_OCM2017_Large_scale_three_dimensional_modelling_for_wave_and_tidal_energy.pdf
Final Published Version
License: Open Government Licence (OGL) 3.0

Download (763kB) | Preview

Abstract

We describe a modelling project to estimate the potential effects of wave & tidal stream renewables on the marine environment. • Realistic generic devices to be used by those without access to the technical details available to developers are described. • Results show largely local sea bed effects at the level of the currently proposed renewables developments in our study area. • Large scale 3D modelling is critical to quantify the direct, indirect and cumulative effects of renewable energy extraction. • This is critical to comply with planning & environmental impact assessment regulations and achieve Good Environmental Status.