Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Epidemic spreading in random rectangular networks

Estrada, Ernesto and Meloni, Sandro and Sheerin, Matthew and Moreno, Yamir (2016) Epidemic spreading in random rectangular networks. Physical Review E, 94 (5). ISSN 1539-3755

Text (Estrada-etal-PRE2016-Epidemic-spreading-in-random-rectangular-networks)
Accepted Author Manuscript

Download (664kB)| Preview


    The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGG) is one of such network models that allows for the consideration of spatial properties on disease propagation. In certain real-world scenarioslike in the analysis of a disease propagating through plantsthe shape of the plots and fields where the host of the disease is located may play a fundamental role on the propagation dynamics. Here we consider a generalization of the RGG to account for the variation of the shape of the plots/fields where the hosts of a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular graph (RRG) and we consider a lower bound for the epidemic threshold of a Susceptible-Infected- Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model on these networks. Using extensive numerical simulations and based on our analytical results we conclude that (ceteris paribus) the elongation of the plot/field in which the nodes are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence and simulation results about the propagation of diseases on plants in plots/fields of the same area and different shapes.