Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

3D PIC simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls

Bamford, R. A. and Alves, E. P. and Cruz, F. and Kellett, B. J. and Fonseca, R. A. and Silva, L. O. and Trines, R. M. G. M. and Halekas, J. S. and Kramer, G. and Harnett, E. and Cairns, R. A. and Bingham, R. (2016) 3D PIC simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls. Astrophysical Journal, 830 (2). ISSN 0004-637X

[img]
Preview
Text (Bamford-AJ-2016-3D-PIC-simulations-of-collisionless-shocks-at-lunar-magnetic-anomalies)
Bamford_AJ_2016_3D_PIC_simulations_of_collisionless_shocks_at_lunar_magnetic_anomalies.pdf
Final Published Version

Download (3MB)| Preview

    Abstract

    Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.