Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Resonant alignment of microswimmer trajectories in oscillatory shear flows

Hope, Alexander and Croze, Ottavio A. and Poon, Wilson C. K. and Bees, Martin A. and Haw, Mark D. (2016) Resonant alignment of microswimmer trajectories in oscillatory shear flows. Physical Review Fluids, 1 (5). ISSN 2469-990X

[img]
Preview
Text (Hope-etal-PRF-2016-Resonant-alignment-of-microswimmer-trajectories)
Hope_etal_PRF_2016_Resonant_alignment_of_microswimmer_trajectories.pdf
Accepted Author Manuscript

Download (813kB) | Preview

Abstract

Oscillatory flows are commonly experienced by swimming micro-organisms in the environment, industrial applications, and rheological investigations. We characterize experimentally the response of the alga Dunaliella salina to oscillatory shear flows and report the surprising discovery that algal swimming trajectories orient perpendicular to the flow-shear plane. The ordering has the characteristics of a resonance in the driving parameter space. The behavior is qualitatively reproduced by a simple model and simulations accounting for helical swimming, suggesting a mechanism for ordering and criteria for the resonant amplitude and frequency. The implications of this work for active oscillatory rheology and industrial algal processing are discussed.