Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

SMART-UQ : uncertainty quantification toolbox for generalised intrusive and non intrusive polynomial algebra

Ortega Absil, Carlos and Riccardi, Annalisa and Vasile, Massimiliano and Tardioli, Chiara (2016) SMART-UQ : uncertainty quantification toolbox for generalised intrusive and non intrusive polynomial algebra. In: 6th International Conference on Astrodynamics Tools and Techniques, 2016-03-14 - 2016-03-17.

Text (Ortega-etal-ICATT-2016-Smart-Uq-uncertainty-quantification-toolbox-for-generalised)
Accepted Author Manuscript

Download (681kB)| Preview


    The paper is presenting a newly developed modular toolbox named Strathclyde Mechanical and Aerospace Research Toolbox for Uncertainty Quantification (SMART-UQ) that implements a collection of intrusive and non intrusive techniques for polynomial approximation and propagation of uncertainties. Non intrusive methods build the polynomial approximation of the uncertain states through sampling of the uncertain parameters space and interpolation. Intrusive methods redefine operators in the states model and perform the states evaluation according to the newly defined operators. The main advantage of non intrusive methods is their range of applicability since the model is treated as a black box hence no regularity is required. On the other hand, they suffer from the curse of dimensionality when the number of required sample points increases. Intrusive techniques are able to overcome this limitation since they have lower computational cost than their corresponding non intrusive counterpart. Nevertheless, intrusive methods are harder to implement and cannot treat the model as a black box. Moreover intrusive methods are able to propagate nonlinear regions of uncertainties while non intrusive methods rely on hypercubes sampling. The most widely known intrusive method for uncertainty propagation in orbital dynamics is Taylor Differential Algebra. The same idea has been generalized to Tchebycheff and Newton polynomial basis because of their fast uniform convergence with relaxed continuity and smoothness requirements. However the SMART-UQ toolbox has been designed in a flexible way to allow further extension of the intrusive and non-intrusive methods to other basis. The Generalized Intrusive Polynomial Expansion (GIPE) approach, implemented in the toolbox and presented here in the paper, expands the uncertain quantities in a polynomial series in the chosen basis and propagates them through the dynamics using a multivariate polynomial algebra. Hence the operations that usually are performed in the space of real numbers are now performed in the algebra of polynomials therefore a polynomial representation of the uncertain states is available at each integration step. To improve the computational complexity of the method, arithmetic operations are performed in the monomial basis. Therefore a transformation between the chosen basis and the monomial basis is performed after the expansion of the elementary functions. Non intrusive methods have been implemented for a set of sampling techniques (Halton, Sobol, Latin Hypercube) for interpolation in the complete polynomial basis as well as on sparse grid for a reduced set of basis. In the paper the different intrusive and non intrusive techniques integrated in SMART-UQ will be presented together with the architectural design of the toolbox. Test cases on propagation of uncertainties in space dynamics with the corresponding intrusive and non intrusive approaches will be discussed in terms of computational cost and accuracy.