Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Application of MPLS-TP for transporting power system protection data

Blair, Steven M. and Booth, Campbell D. and Michielsen, Jurgen and Joshi, Nilesh (2016) Application of MPLS-TP for transporting power system protection data. In: IEEE International Conference on Smart Grid Communications, 2016-11-06 - 2016-11-09, Four Points Hotel. (In Press)

[img]
Preview
Text (Blair-etal-ICSGC2016-MPLS-TP-for-transporting-power-system-protection-data)
Blair_etal_ICSGC2016_MPLS_TP_for_transporting_power_system_protection_data.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Power utilities are increasingly dependent on the use of communications networks. These networks are evolving to be packet-based, rather than using conventional Time-Division Multiplexing (TDM) technologies. Transporting current differential protection traffic over a packet network is especially challenging, due to the safety-critical nature of protection, the strict requirements for low delay and low asymmetrical delay, and the extensive use of legacy TDM-based protocols. This paper highlights the key technical characteristics of Multi-Protocol Label Switching-Transport Profile (MPLS-TP), and demonstrates its application for transporting current differential protection traffic. A real-time hardware-in-the-loop testing approach has been used to thoroughly validate the technologies in various configurations. It is demonstrated that MPLS-TP technologies can meet the requirements of current differential protection and other, less critical applications. In particular, it is shown that delay and asymmetrical delay can be controlled through the inherent use of bi-directional paths---even when “hitless” link redundancy is configured. The importance of appropriate traffic engineering, clocking schemes, circuit emulation methods is also demonstrated.