Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

On the optimization of generators for offshore direct drive wind turbines

McDonald, Alasdair and Bhuiyan, Nurul Azim (2016) On the optimization of generators for offshore direct drive wind turbines. IEEE Transactions on Energy Conversion. pp. 1-10. ISSN 0885-8969

[img]
Preview
Text (McDonald-Bhuiyan-TEC-2016-generators-for-offshore-direct-drive-wind-turbines)
McDonald_Bhuiyan_TEC_2016_generators_for_offshore_direct_drive_wind_turbines.pdf - Accepted Author Manuscript

Download (910kB) | Preview

Abstract

The objective of this paper is to optimize direct drive permanent magnet synchronous generators for offshore direct drive wind turbines in order to reduce the cost of energy. A 6MW wind turbine design is assumed and parametric electromagnetic and structural generator models are introduced for a surface-mounted magnet generator topology (using magnets with high BHmax) and a flux-concentrating variant (using magnets with lower BHmax). These are optimized using a hybrid Genetic Algorithm and Pattern Search process and the results show that the surface-mounted permanent magnet generator produces the lower cost of energy. The choice of objective function is addressed and it is found that a simplified metric incorporating generator cost and losses proxy produces similar designs to a full cost of energy calculation. Further steps to improve the quality of the model include the effect of generator mass on the design and cost of the turbine tower and foundation, which can add €0.4m to the turbine cost. Further optimizations are carried out to show the impacts of magnetic material costs (doubling this leads to a €1.1/MWh increase in cost of energy) and generator diameter limits (increasing the upper limit from 6m to 8m leads to a 0.9% drop in cost of energy) have on the choice of optimum independent variables.