Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Energy modelling of a large 2-stroke marine diesel engine using CFD

Jin, Wei and Vassalos, Dracos (2013) Energy modelling of a large 2-stroke marine diesel engine using CFD. In: Low Carbon Shipping Conference, 2013-09-09 - 2013-09-10.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The complete in-cylinder working cycles of a large 2-stroke marine diesel engine (MAN B&W S60MC-C8.1) were numerically simulated using the multi-dimensional CFD (Computational Fluid Dynamics) approach. The computation solver is the general commercial CFD software ANSYS FLUENT 14.0. Two finite- rate chemistry-turbulence interacting relations, thus Finite-Rate/Eddy-Dissipation (FRED) and Eddy-Dissipation (ED) combustion models were used to get the corresponding combustion process. The ignition delay of FRED model was compared with Hardenburg and Hass auto ignition model and the Arrhenius FRED model presents better performance for the prediction of ignition lag. Two commonly adopted hydrocarbons in combustion simulations, n-heptane (C7H16) and decane (C10H22) with different physical and chemical properties were chosen and compared as light diesel oil in the shop tests. It shows that the cases with C10H22 as fuel gives better agreement with the measured pressure trace. The calculated results under ideal and real gas conditions were compared with the measured pressure data as well. The adopted Soave-Redlich-Kwong real gas model does not present superiority over the ideal gas model. These numerical investigations and results would provide appropriate references for further studies.