Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

High-efficiency NPC multilevel converter using super-junction MOSFETs

McNeill, Neville and Yuan, Xibo and Anthony, Philip (2016) High-efficiency NPC multilevel converter using super-junction MOSFETs. IEEE Transactions on Industrial Electronics, 63 (1). pp. 25-37. ISSN 0278-0046

[img]
Preview
Text (McNeil-etal-IEEETIE2015-High-efficiency-NPC-multilevel-converter-using-super-junction)
McNeil_etal_IEEETIE2015_High_efficiency_NPC_multilevel_converter_using_super_junction.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (2MB) | Preview

Abstract

Super-junction MOSFETs exhibit low on-state resistances and low switching losses. However, the reverse recovery behavior of their intrinsic diodes and their output capacitance characteristics make their deployment in freewheeling locations challenging. In this paper, a new snubber circuit arrangement has been proposed for a three-level converter to minimize the effect of the output capacitance. This is used in conjunction with diode deactivation circuitry to address the diode recovery behavior. Results are given for a three-phase three-level neutral point clamped converter running from an input voltage of 720 V and supplying a 3-kVA load. The converter operates with no forced cooling and efficiency is estimated at 99.3%. Apart from lower energy consumption, an advantage of high efficiency is a reduced converter mass due to reduced cooling requirements.