Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A microfluidics tool for high-throughput, real-time multimodal imaging of nanoparticle-cell interactions

Cunha-Matos, C. A. and Millington, O. M. and Wark, A. W. and Zagnoni, M. (2014) A microfluidics tool for high-throughput, real-time multimodal imaging of nanoparticle-cell interactions. In: 4th European Conference on Microfluidics, Limerick, 10-12 December 2014. Société hydrotechnique de France, Paris. ISBN 9791093567044

[img]
Preview
Text (Cunha-Matos-Micr4ofluidics2014-Microfluidics-tool-for-high-throughput)
Cunha_Matos_Micr4ofluidics2014_Microfluidics_tool_for_high_throughput.pdf - Accepted Author Manuscript

Download (499kB) | Preview

Abstract

The increasing use of nanomaterials for biomedical applications has raised the need for efficient, robust and low-cost high-throughput assessment of nanotoxicity and cell-nanoparticle interactions. Microfluidics provides the tools for high-throughput single-cell functional monitoring, while gold nanorods have unique potential for intracellular tracking and can simultaneously be used as drug carriers. Presented here is a miniaturised platform that integrates these features with a multimodal approach to cell imaging. A microfluidic device allows for trapping of an array of singlecells, followed by the controlled delivery of nanoparticles into the cell array and subsequent real-time multimodal imaging of cellular interactions with functionalised nanoparticles. This system has been successfully used to assess cellnanoparticle interactions at the single-cell level.