Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Numerical simulation of exploring fish motion by a series of linked rigid bodies

Li, Ruoxin and Xiao, Qing and Day, Sandy (2015) Numerical simulation of exploring fish motion by a series of linked rigid bodies. In: Research Presentation Day 2015, 2015-06-24, Colville Building, University of Strathclyde.

[img]
Preview
Text (Li-etal-RPD-2015-simulation-of-exploring-fish-motion-by-a-series-of-linked-rigid-bodies)
Li_etal_RPD_2015_simulation_of_exploring_fish_motion_by_a_series_of_linked_rigid_bodies.pdf
Final Published Version

Download (811kB) | Preview

Abstract

Propulsion and manoeuvring ability are parts of the most common and complicated mechanisms in nature, such as fish swimming in the water and birds flying in the sky. In order to get a deep understanding of these problems, a comprehensive and completed replication of fish movements is carried out in this project. Present work is based on a robotic fish named Amphibot III, which is a bio-inspired swimming robot. It is composed of 8 elements and the last part has a caudal fin attached as a tail. By using CFD method, the caudal fin is omitted in order to simplify the model. These elements in the model are connected by hinges. Commercial software FLUENT is used to solve flow field. Swimming tests are performed under two different conditions by varying the frequency and amplitude of the angular motion at the hinges. The motion curve at the head of fish is presented under both conditions.