Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Identification of functional connections in biological neural networks using dynamical Bayesian networks

Dong, Chaoyi and Yue, Hong (2016) Identification of functional connections in biological neural networks using dynamical Bayesian networks. IFAC-PapersOnLine. p. 1. ISSN 1474-6670

[img]
Preview
Text (Dong-Yue-IFACO2016-Identification-of-functional-connections-in-biological-neural-networks)
Dong_Yue_IFACO2016_Identification_of_functional_connections_in_biological_neural_networks.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (340kB) | Preview

Abstract

Investigation of the underlying structural characteristics and network properties of biological networks is crucial to understanding the system-level regulatory mechanism of network behaviors. A Dynamic Bayesian Network (DBN) identification method is developed based on the Minimum Description Length (MDL) to identify and locate functional connections among Pulsed Neural Networks (PNN), which are typical in synthetic biological networks. A score of MDL is evaluated for each candidate network structure which includes two factors: i) the complexity of the network; and ii) the likelihood of the network structure based on network dynamic response data. These two factors are combined together to determine the network structure. The DBN is then used to analyze the time-series data from the PNNs, thereby discerning causal connections which collectively show the network structures. Numerical studies on PNN with different number of nodes illustrate the effectiveness of the proposed strategy in network structure identification.