Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Directional-dependent thickness and bending rigidity of phosphorene

Verma, Deepti and Hourahine, Benjamin and Frauenheim, Thomas and James, Richard D. and Dumitrică, Traian (2016) Directional-dependent thickness and bending rigidity of phosphorene. Physical Review B (Condensed Matter), 94 (12). ISSN 0163-1829

Text (Verma-etal-PRB-2016-Directional-dependent-thickness-and-bending-rigidity-of-phosphorene)
Verma_etal_PRB_2016_Directional_dependent_thickness_and_bending_rigidity_of_phosphorene.pdf - Accepted Author Manuscript

Download (981kB) | Preview


The strong mechanical anisotropy of phosphorene combined with the atomic-scale thickness challenges the commonly employed elastic continuum idealizations. Using objective boundary conditions and a density functional-based potential, we directly uncover the flexibility of individual α, β and γ phosphorene allotrope layers along an arbitrary bending direction. A correlation analysis with the in-plane elasticity finds that although a monolayer thickness cannot be defined in the classical continuum sense, an unusual orthotropic plate with a directional-dependent thickness can unambiguously describe the out-of-plane deformation of α and γ allotropes. Such decoupling of the in-plane and out-of-plane nanomechanics might be generic for two-dimensional materials beyond graphene.