Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Towards improved forecasting for offshore wind turbine O&M transfers

Mills, P. R. and Stephen, B. and McMillan, D. and Lazakis, I. (2016) Towards improved forecasting for offshore wind turbine O&M transfers. In: Renewable Energies Offshore II. CRC Press. ISBN 9781138626270

[img]
Preview
Text (Mills-etal-RENEW2016-Towards-improved-forecasting-for-offshore-wind-turbine)
Mills_etal_RENEW2016_Towards_improved_forecasting_for_offshore_wind_turbine.pdf
Accepted Author Manuscript

Download (486kB) | Preview

Abstract

Failure to adequately account for marine conditions can incur uncertainty in operation and maintenance costs for offshore renewable installations. Winter months with high potential for electricity generation coincide with the conditions where access for maintenance is most challenging. Advancing towards a demonstration of a strategic maintenance approach will assist in both reducing direct costs and associated initial project finance, while informing this with a better understanding of the impact of marine conditions could improve crew transfer vessel logistics and planning. This paper presents historical weather data close to East Anglia One Wind Farm for use in the development of vessel access models. The research provides a forecasting methodology for predicting wave directions at a site close to the wind farm. Improved ability to predict wave direction could improve existing and future modelling of the impact of marine conditions on the speed and fuel usage of vessels. Potential also exists for directional information to be utilised in scheduling transfer operations.