Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Fractional fourier transform based co-radar waveform : experimental validation

Gaglione, Domenico and Clemente, Carmine and Persico, Adriano Rosario and Ilioudis, Christos V. and Proudler, Ian K. and Soraghan, John J. (2016) Fractional fourier transform based co-radar waveform : experimental validation. In: 2016 IEEE Sensor Signal Processing for Defence (SSPD). IEEE, Piscataway, NJ.. ISBN 9781509003266

[img]
Preview
Text (Gaglione-etal-SSPD2016-Fractional-fourier-transform-based-co-radar-waveform)
Gaglione_etal_SSPD2016_Fractional_fourier_transform_based_co_radar_waveform.pdf - Accepted Author Manuscript

Download (6MB) | Preview

Abstract

A Fractional Fourier Transform (FrFT) based waveform design for joint radar-communication systems (Co-Radar) that embeds data into chirp sub-carriers with different time-frequency rates has been recently presented. Simulations demonstrated the possibility to reach data rates as high as 3.660 Mb/s while maintaining good radar performance compared to a Linear Frequency Modulated (LFM) pulse that occupies the same bandwidth. In this paper the experimental validation of the concept is presented. The system is considered in its basic configuration, with a mono-static radar that generates the waveforms and performs basic radar tasks, and a communication receiver in charge of the pulse demodulation. The entire network is implemented on a Software Defined Radio (SDR) device. The system is then used to acquire data and assess radar and communication capabilities.