Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Human hepatic HepaRG cells maintain high intrinsic CYP450 activity/metabolism and significantly outperform standard HepG2/C3A cells used in drug pharmacology applications

Nelson, L. J. and Treskes, P. and Henderson, C. J. and Homer, N. and Morgan, K. and LeBled, C. and Grant, M. H. and Plevris, J. N. (2014) Human hepatic HepaRG cells maintain high intrinsic CYP450 activity/metabolism and significantly outperform standard HepG2/C3A cells used in drug pharmacology applications. Journal of Hepatology, 60 (1 Supp). S176-S177. ISSN 0168-8278

[img]
Preview
Text (Nelson-etal-ILC2014-Human-hepatic-HepRG-cells-maintain-high-intrinsic-CYP450)
Nelson_etal_ILC2014_Human_hepatic_HepRG_cells_maintain_high_intrinsic_CYP450.pdf

Download (405kB) | Preview

Abstract

Introduction: Conventional in vitro human hepatic models for drug testing are based on the use of cell lines or primary human hepatocytes (PHHs). However, limited availability, inter-donor functional variability and early phenotypic alterations of PHHs in vitro restrict their use; whilst cell lines such as HepG2/C3As lack a substantial and variable set of liver-specific functions, specifically, CYP450 activity. In this study we compared CYP450 activity/ metabolism between HepG2/C3A and human HepaRG cells as hepatic models for pre-clinical drug testing. Methods: Human hepatic cell lines [HepG2/C3A or HepaRG] were grown to >80% confluence on collagen-I-coated plates and treated (in triplicates) 24 h with prototypical inducers rifampicin (CYP3A4) and omeprazole (CYP1A2), [n=3]. 50μM testosterone or phenacetin were added and supernatant and cell samples taken after 2 hours of incubation at 37°C. CYP1A2/3A4 activity [P450-Glo™-Luminometry; Promega] was determined (Figure 1). Relative turnover of testosterone [HPLC] and phenacetin [LC-MS/MS] metabolites was also measured. Cell phenotype was assessed by light-microscopy, histology (PAS-Glycogen), CYP3A4, F-actin/phalloidin, and JC-1 fluorescent-staining. Results: Figure 1 shows HepaRG CYP1A2/3A4 activity was 40-80x fold >> HepG2/C3A cells [P<0.001]; Drug profiling revealed HepaRGs had both enhanced production of major metabolites of phenacetin and testosterone and more intact drug metabolism compared with HepG2/C3A. In contrast with HepG2/C3A, HepaRGs displayed a more intact hepatic phenotype, including: Strong positive glycogen, CYP3A4 staining, high JC-1-positive intrinsic metabolic activity (ΔΨm) and organotypic gross morphology. Discussion / Conclusion: HepaRG cells may represent a more physiologically-relevant pre-clinical platform for CYP450 activation/ inhibition, safety pharmacology, as well as drug-drug interaction studies.