Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

Mckeeman, I and Fusiek, G and Perry, M and Johnston, M and Saafi, M and Niewczas, P and Walsh, M and Khan, S (2016) First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors. Smart Materials and Structures, 25 (9). ISSN 0964-1726

[img]
Preview
Text (McKeeman-etal-SMS2016-Measuring-concrete-prestress-levels-with-metal-packaged-fibre-optic-sensors)
McKeeman_etal_SMS2016_Measuring_concrete_prestress_levels_with_metal_packaged_fibre_optic_sensors.pdf
Accepted Author Manuscript

Download (10MB) | Preview

Abstract

In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.