Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Automatically detecting and correcting errors in power quality monitoring data

Blair, Steven M. and Booth, Campbell D. and Williamson, Gillian and Poralis, Alexandros and Turnham, Victoria (2016) Automatically detecting and correcting errors in power quality monitoring data. IEEE Transactions on Power Delivery, 32 (2). pp. 1005-1013. ISSN 0885-8977

[img]
Preview
Text (Blair-etal-IEEETPD2016-Automatically-detecting-and-correcting-errors)
Blair_etal_IEEETPD2016_Automatically_detecting_and_correcting_errors.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Dependable power quality (PQ) monitoring is crucial for evaluating the impact of smart grid developments. Monitoring schemes may need to cover a relatively large network area, yet must be conducted in a cost-effective manner. Real-time communications may not be available to observe the status of a monitoring scheme or to provide time synchronization, and therefore undetected errors may be present in the data collected. This paper describes a process for automatically detecting and correcting errors in PQ monitoring data, which has been applied in an actual smart grid project. It is demonstrated how to: unambiguously recover from various device installation errors; enforce time synchronization between multiple monitoring devices and other events by correlation of measured frequency trends; and efficiently visualize PQ data without causing visual distortion, even when some data values are missing. This process is designed to be applied retrospectively to maximize the useful data obtained from a network PQ monitoring scheme, before quantitative analysis is performed. This work therefore ensures that insights gained from the analysis of the data - and subsequent network operation or planning decisions - are also valid. A case study of a UK smart grid project, involving wide-scale distribution system PQ monitoring, demonstrates the effectiveness of these contributions. All source code used for the paper is available for reuse.