Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Probing the sudlow binding site with warfarin : how does gold nanocluster growth alter human serum albumin?

Russell, B. A. and Mulheran, P. A. and Birch, D. J. S. and Chen, Y. (2016) Probing the sudlow binding site with warfarin : how does gold nanocluster growth alter human serum albumin? Physical Chemistry Chemical Physics, 18 (33). pp. 22874-22878. ISSN 1463-9076

Text (Russell-etal-PCCP-2016-how-does-gold-nanocluster-growth-alter-human-serum-albumin)
Accepted Author Manuscript

Download (854kB) | Preview


The search for new fluorescent molecules is vital to the advancement of molecular imaging and sensing for the benefit of medical and biological studies. One such class of new fluorescent molecule is fluorescent gold nanoclusters encapsulated in Human Serum Albumin (HSA-AuNC). In order to use this new fluorescent molecule as a sensor or fluorescent marker in biological imaging both in vitro and in vivo it is important to understand whether/how the proteins function is changed by the synthesis and presence of the gold nanoclusters inside the protein. Natural HSA acts as the main drug carrier in the blood stream, carrying a multitude of molecules in two major binding sites (Sudlow I and II). To test the effects of gold on the ability of HSA to act as a drug carrier we employed warfarin, an anticoagulant drug, as a fluorescent probe to detect changes between natural HSA and HSA-AuNCs. AuNCs are found to inhibit the take up of warfarin by HSA. Evidence for this is found from fluorescence spectral and lifetime measurements. Interestingly, the presence of warfarin bound to HSA also inhibits the formation of gold nanoclusters within protein. This research provides valuable insight into how protein function can change upon synthesis of AuNCs and how that will affect their use as a fluorescent probe.