Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Steel microstructures in autogeneous laser welds

McPherson, N.A. and Samson, H. and Suarez-Fernandez, N. and Baker, T.N. (2003) Steel microstructures in autogeneous laser welds. Journal of Laser Applications, 15 (4). pp. 200-201. ISSN 1042-346X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Autogenous Nd:YAG laser welding was carried out on austenitic stainless steel (316LN) and duplex stainless steel (2205). The structures were examined using optical and color etching metallography. This showed optically that the austenitic steel solidified as a totally austenitic structure, but the transmission electron microscopy (TEM) work confirmed the presence of ferrite. In the case of the duplex stainless steel, the solidification structure was almost 100% ferrite. However, the weld metal properties required were met. Dissimilar autogenous Nd:YAG laser welding was performed on a duplex stainless steel to carbon steel joint and on an austenitic stainless steel to carbon steel joint. This revealed the presence of preferential fluid flow to the stainless steel side in the weld metal, and areas of excessive hardness. The results of this study were that filler wire would be required to counteract the high hardness effects induced by the autogenous laser welding process, without having to resort to postweld heat treatment. An evaluation has also taken place of autogenous CO2 laser welds of D and DH 36 steel. Mechanical properties of the DH 36 steel have been found to be acceptable, and the structure of the D grade material has been examined using TEM, where pearlite and bainite have been identified as being present.