Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

XRD and XPS studies on surface MMC layer of SiC reinforced Ti-6Al-4V alloy

Selamat, M.S. and Watson, L.M. and Baker, T.N. (2003) XRD and XPS studies on surface MMC layer of SiC reinforced Ti-6Al-4V alloy. Journal of Materials Processing Technology, 142 (3). pp. 725-737. ISSN 0924-0136

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Overlapping tracks were produced by laser processing using a powder SiC (6 μm) preplacement technique which has been developed to modify the surface structure of a Ti-6Al-4V alloy. A continuous-wave CO2 laser was used for the processing which produced six overlapping tracks covering 14 mm across the surface of a 10 mm thick plate. Under spinning beam conditions, a surface alloyed/metal matrix composite (MMC) layer over 300 μm in depth was produced on the alloy. The surface contained a complex microstructure, but with no cracks and only two pores at the melt/HAZ interface. Using XRD and XPS analysis, it was shown that the solidified melt consisted of α′-Ti, Ti0.55C0.45 and Ti5Si3 phases, which vary with melt depth and with the particular group of overlapping tracks examined. Therefore, no new phases to those previously identified in single track laser processing experiments were found in this work.