Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Analysis on tailed distributed arithmetic codes for uniform binary sources

Fang, Yong and Stankovic, Vladimir and Cheng, Samuel and Yang, En-hui (2016) Analysis on tailed distributed arithmetic codes for uniform binary sources. IEEE Transactions on Communications, 64 (10). pp. 4305-4319. ISSN 0090-6778

Text (Fang-etal-IEEETC2016-Analysis-on-tailed-distributed-arithmetric-codes)
Fang_etal_IEEETC2016_Analysis_on_tailed_distributed_arithmetric_codes.pdf - Accepted Author Manuscript

Download (595kB) | Preview


Distributed Arithmetic Coding (DAC) is a variant of Arithmetic Coding (AC) that can realise Slepian-Wolf Coding (SWC) in a nonlinear way. In the previous work, we defined Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS) for DAC. In this paper, we make use of CCS and HDS to analyze tailed DAC, a form of DAC mapping the last few symbols of each source block onto non-overlapped intervals as traditional AC. We first derive the exact HDS formula for tailless DAC, a form of DAC mapping all symbols of each source block onto overlapped intervals, and show that the HDS formula previously given is actually an approximate version. Then the HDS formula is extended to tailed DAC. We also deduce the average codebook cardinality, which is closely related to decoding complexity, and rate loss of tailed DAC with the help of CCS. The effects of tail length are extensively analyzed. It is revealed that by increasing tail length to a value not close to the bitstream length, closely-spaced codewords within the same codebook can be removed at the cost of a higher decoding complexity and a larger rate loss. Finally, theoretical analyses are verified by experiments.