Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Development of sedentary behavior across childhood and adolescence : longitudinal analysis of the Gateshead Millennium Study

Janssen, Xanne and Mann, Kay D and Basterfield, Laura and Parkinson, Kathryn N. and Pearce, Mark S. and Reilly, Jessica K. and Adamson, Ashley J. and Reilly, John J. (2016) Development of sedentary behavior across childhood and adolescence : longitudinal analysis of the Gateshead Millennium Study. International Journal of Behavioral Nutrition and Physical Activity, 13. p. 88. ISSN 1479-5868

Text (Janssen-etal-IJBNPA2016-Sedentary-behaviour-across-childhood-and-adolescence)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (811kB) | Preview


Background In many parts of the world policy and research interventions to modify sedentary behavior of children and adolescents are now being developed. However, the evidence to inform these interventions (e.g. how sedentary behavior changes across childhood and adolescence) is limited. This study aimed to assess longitudinal changes in sedentary behavior, and examine the degree of tracking of sedentary behavior from age 7y to 15y. Methods Participants were part of the Gateshead Millennium Study cohort. Measures were made at age 7y (n = 507), 9y (n = 510), 12y (n = 425) and 15y (n = 310). Participants were asked to wear an ActiGraph GT1M and accelerometer epochs were defined as sedentary when recorded counts were ≤25 counts/15 s. Differences in sedentary time and sedentary fragmentation were examined using the Friedman test. Tracking was examined using Spearman’s correlation coefficients and trajectories over time were assessed using multilevel linear spline modelling. Results Median daily sedentary time increased from 51.3 % of waking hours at 7y to 74.2 % at 15y. Sedentary fragmentation decreased from 7y to 15y. The median number of breaks/hour decreased from 8.6 to 4.1 breaks/hour and the median bout duration at 50 % of the cumulative sedentary time increased from 2.4 min to 6.4 min from 7y to 15y. Tracking of sedentary time and sedentary fragmentation was moderate from 7y to 15y however, the rate of change differed with the steepest increases/decreases seen between 9y and 12y. Conclusion In this study, sedentary time was high and increased to almost 75 % of waking hours at 15y. Sedentary behavior became substantially less fragmented as children grew older. The largest changes in sedentary time and sedentary fragmentation occurred between 9y to 12y, a period which spans the transition to secondary school. These results can be used to inform future interventions aiming to change sedentary behavior.