Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Distributed negotiation in future power networks : rapid prototyping using multi-agent system

Chen, M. and Syed, M. H. and Guillo Sansano, E. and McArthur, S. D. J. and Burt, G. M. and Kockar, I. (2016) Distributed negotiation in future power networks : rapid prototyping using multi-agent system. In: 2016 IEEE PES Innovation Smart Grid Technologies Conference Europe. IEEE, Piscataway, NJ..

[img]
Preview
Text (Chen-etal-ISGTE2016-Distributed-negotiation-in-future-power-networks-rapid-prototyping-using-multi-agent-system)
Chen_etal_ISGTE2016_Distributed_negotiation_in_future_power_networks_rapid_prototyping_using_multi_agent_system.pdf
Accepted Author Manuscript

Download (473kB) | Preview

Abstract

Technologies like multi-agent system (MAS) have the capability to deal with future power grid requirements such as frequency management and voltage control under a flexible, intelligent and active feature. Based on web of cells (WoC) architecture proposed by European Liaison on Electricity Committed Towards longer-term Research Activity Integrated Research Programme (ELECTRA IRP), a distributed MAS with distributed negotiation ability for future distributed control (including frequency management and voltage control) is proposed. Each cell is designed as an intelligent agent and is investigated in case studies with constraints, where each agent can only communicate with its neighbouring agents. The interaction logic among agents is according to the distributed negotiation algorithm under consideration by the authors. Simulation results indicate that the WoC architecture could negotiate resources in a distributed manner and achieve successful exchange of resources by coordinating distributed agents. Moreover, the prototype reported in this paper can be extended further for future grids' distributed control regimes. The option of MAS to be exploited for the support of the development and integration of novel power system concepts is explored.